Abstract
Abstract. Mobile monitoring is becoming an increasingly popular technique to assess air pollution on fine spatial scales, but methods to determine specific source contributions to measured pollutants are sorely needed. One approach is to isolate plumes from mobile monitoring time series and analyze them separately, but methods that are suitable for large mobile monitoring time series are lacking. Here we discuss a novel method used to detect and isolate plumes from an extensive mobile monitoring data set. The new method relies on density-based spatial clustering of applications with noise (DBSCAN), an unsupervised machine learning technique. The new method systematically runs DBSCAN on mobile monitoring time series by day and identifies a subset of points as anomalies for further analysis. When applied to a mobile monitoring data set collected in Houston, Texas, analyzed anomalies reveal patterns associated with different types of vehicle emission profiles. We observe spatial differences in these patterns and reveal striking disparities by census tract. These results can be used to inform stakeholders of spatial variations in emission profiles not obvious using data from stationary monitors alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.