Abstract

Massive data from observations, experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models. We present a novel method to identify such high dimensional stochastic dynamical systems that are perturbed by a non-Gaussian α-stable Lévy noise. More explicitly, firstly a machine learning framework to solve the sparse regression problem is established to grasp the drift terms through one of nonlocal Kramers–Moyal formulas. Then the jump measure and intensity of the noise are disposed by the relationship with statistical characteristics of the process. Three examples are then given to demonstrate the feasibility. This approach proposes an effective way to understand the complex phenomena of systems under non-Gaussian fluctuations and illuminates some insights into the exploration for further typical dynamical indicators such as the maximum likelihood transition path or mean exit time of these stochastic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.