Abstract
Attacks are many types to disturb the network or any other websites. Phishing attacks (PA) are a type of attacks which attack the website and damage the website and may lose the data. Many types of research have been done to prevent the attacks. To overcome this, in this paper, the integrated phishing attack detection system which is adopted with SVM classifier is implemented to detect phishing websites. Phishing is the cyber attack that will destroy the website and may attack with the virus. There are two parameters that can detect the final phishing detection rate such as Identity, and security. Phishing attacks also occur in various banking and e-commerce websites. This paper deals with the UCL machine learning phishing dataset which consists of 32 attributes. The proposed algorithm implements on this dataset and shows the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.