Abstract

New ways are discussed of numerically detecting the nature of phase transitions and the position of phase equilibria in models of thermotropic and lyotropic liquid crystals where the phase transitions are dominated by strong fluctuations. The cases of continuous transitions (critical points), first-order transitions, as well as the absence of transitions, are considered. It is shown how computer-simulation techniques, which operate on a free-energy level by using reweighting (histogram) techniques in combination with finite-size scaling theory, provide an effective tool for unambiguously determining the nature of the transition and the position of associated phase equilibria. Three specific models are considered: the Lebwohl–Lasher model of the nematic–isotropic transition in thermotropic liquid crystals, the mismatch model of the main chain-melting phase transition in lipid-bilayer lyotropic liquid crystals, and a model for critical mixing in a lipid-bilayer lyotropic liquid crystal incorporated with trans-bilayer polypeptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.