Abstract
Partial synchronization is an important dynamical process of coupled oscillators on various natural and artificial networks, which can remain undetected due to the system complexity. With an analogy between pairwise asynchrony of oscillators and topological defects, i.e., vortices, in the two-dimensional XY model, we propose a robust and data-driven method to identify the partial synchronization on complex networks. The proposed method is based on an integer matrix whose element is pseudovorticity that discretely quantifies asynchronous phase dynamics in every two oscillators, which results in graphical and entropic representations of partial synchrony. As a first trial, we apply our method to 200 FitzHugh-Nagumo neurons on a complex small-world network. Partially synchronized chimera states are revealed by discriminating synchronized states even with phase lags. Such phase lags also appear in partial synchronization in chimera states. Our topological, graphical, and entropic method is implemented solely with measurable phase dynamics data, which will lead to a straightforward application to general oscillatory networks including neural networks in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.