Abstract

BackgroundAtrial fibrillation (AF) may occur asymptomatically and can be diagnosed only with electrocardiography (ECG) while the arrhythmia is present. ObjectivesThe aim of this study was to independently validate the approach of using artificial intelligence (AI) to identify underlying paroxysmal AF from a 12-lead ECG in sinus rhythm (SR). MethodsAn AI algorithm was trained to identify patients with underlying paroxysmal AF, using electrocardiographic data from all in- and outpatients from a single center with at least 1 ECG in SR. For patients without AF, all ECGs in SR were included. For patients with AF, all ECGs in SR starting 31 days before the first AF event were included. The patients were randomly allocated to training, internal validation, and testing datasets in a 7:1:2 ratio. In a secondary analysis, the AF prevalence of the testing group was modified. Additionally, the performance of the algorithm was validated at an external hospital. ResultsThe dataset consisted of 494,042 ECGs in SR from 142,310 patients. Testing the model on the first ECG of each patient (AF prevalence 9.0%) resulted in accuracy of 78.1% (95% CI: 77.6%-78.5%), area under the receiver-operating characteristic curve of 0.87 (95% CI: 0.86-0.87), and area under the precision recall curve (AUPRC) of 0.48 (95% CI: 0.46-0.50). In a low-risk group (AF prevalence 3%), the AUPRC decreased to 0.21 (95% CI: 0.18-0.24). In a high-risk group (AF prevalence 30%), the AUPRC increased to 0.76 (95% CI: 0.75-0.78). This performance was robust when validated in an external hospital. ConclusionsThe approach of using an AI-enabled electrocardiographic algorithm for the identification of patients with underlying paroxysmal AF from ECGs in SR was independently validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.