Abstract
This study aimed to develop a deep learning-based model to detect obstructive sleep apnea (OSA) using craniofacial photographs. Participants referred for polysomnography (PSG) were recruited consecutively and randomly divided into the training, validation, and test groups for model development and evaluation. Craniofacial photographs were taken from five different angles (front, right 90° profile, left 90° profile, right 45° profile, and left 45° profile) and inputted to the convolutional neural networks. The neural networks extracted features from photographs and outputted the probabilities of the presence of the disease. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated using PSG diagnosis as the reference standard. These analyses were repeated using two apnea-hypopnea index thresholds (≥ 5 and ≥ 15events/h). A total of 393 participants were enrolled. Using the operating point with maximum sum of sensitivity and specificity, the model of the photographs exhibited an AUC of 0.916 (95% confidence interval [CI], 0.847-0.960) with a sensitivity of 0.95 and a specificity of 0.80 at an AHI threshold of 5 events/h; an AUC of 0.812 (95% CI, 0.729-0.878) with a sensitivity of 0.91 and a specificity of 0.73 at an AHI threshold of 15 events/h. The results suggest that combining craniofacial photographs and deep learning techniques can help detect OSAautomatically. The model may have potential utility as a tool to assess OSA probability in clinics or screen forOSA in the community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.