Abstract

This paper studies the classical problem of detecting the locations of signal occurrences in a one-dimensional noisy measurement. Assuming the signal occurrences do not overlap, we formulate the detection task as a constrained likelihood optimization problem and design a computationally efficient dynamic program that attains its optimal solution. Our proposed framework is scalable, simple to implement, and robust to model uncertainties. We show by extensive numerical experiments that our algorithm accurately estimates the locations in dense and noisy environments, and outperforms alternative methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.