Abstract

Enteric pathogens, such as non-typhoidal Salmonella, Campylobacter and Escherichia coli, can reside in the intestinal tract of many animals, including livestock, companion animals, small mammals and reptiles. Often, these animals can appear healthy; nonetheless, humans can become infected after direct or indirect contact, resulting in a substantial illness burden. An estimated 14% of the 3.2 million illnesses that occur in the United States of America (USA) each year from such enteric pathogens are attributable to animal contact. Surveillance for enteric pathogens in the USA includes the compilation and interpretation of both laboratory and epidemiologic data. However, the authors feel that a collaborative, multisectoral and transdisciplinary - or One Health - approach is needed for data collection and analysis, at every level. In addition, they suggest that the future of enteric illness surveillance lies in the development of improved technologies for pathogen detection and characterisation, such as genomic sequencing and metagenomics. In particular, using whole-genome sequencing to compare genetic sequences of enteric pathogens from humans, food, animals and the environment, can help to predict antimicrobial resistance among these pathogens, determine their genetic relatedness and identify outbreaks linked to a common source. In this paper, the authors describe three recent, multi-state human enteric illness outbreaks linked to animal contact in the USA and discuss how integrated disease surveillance was essential to outbreak detection and response. Additional datasharing between public health and animal health laboratories and epidemiologists at the local, national, regional and international level may help to improve surveillance for emerging animal and human health threats and lead to new opportunities for prevention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call