Abstract
We introduce the optical ruler, an electromagnetic analog of a physical ruler, for nanoscale displacement metrology. The optical ruler is a complex electromagnetic field in which singularities serve as the marks on the scale. It is created by the diffraction of light on a metasurface, with singularity marks then revealed by high-magnification interferometric observation. Using a Pancharatnam-Berry phase metasurface, we demonstrate a displacement resolving power of better than 1 nanometer (λ/800, where λ is the wavelength of light) at a wavelength of 800 nanometers. We argue that a resolving power of ~λ/4000, the typical size of an atom, may be achievable. An optical ruler with dimensions of only a few tens of micrometers offers applications in nanometrology, nanomonitoring, and nanofabrication, particularly in the demanding and confined environment of future smart manufacturing tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.