Abstract

Detecting motion changes is a fundamental prerequisite for solving tasks in sports and in everyday life. It is known that peripheral vision is used to detect these changes and that saccades impair detection performance. However, comparatively little is known about the role of smooth-pursuit eye-movements (SPEMs) during these tasks. Therefore, we compared peripheral motion-change detection during SPEM and fixation at eccentricities up to 18°, simulating the perceptual demands of real-life situations. Based on expert gaze behavior in sports, we predicted that motion detection should be better during fixation than SPEM. In a series of three experiments, we consistently found that detection rates and response times were impaired during SPEM compared to fixation, particularly at 18° eccentricity. With an invisible pursuit object and targets moving ahead rather than behind the pursued object, performance differences in response times declined, whereas differences in detection rates interestingly remained unmoved. We argue that retinal image motion and attentional demands are reasons for SPEM impairments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call