Abstract

We develop a general theory to test correct specification of multiplicative error models of non-negative time-series processes, which include the popular autoregressive conditional duration (ACD) models. Both linear and nonlinear conditional expectation models are covered, and standardized innovations can have time-varying conditional dispersion and higher-order conditional moments of unknown form. No specific estimation method is required, and the tests have a convenient null asymptotic N(0,1) distribution. To reduce the impact of parameter estimation uncertainty in finite samples, we adopt Wooldridge's (1990a) device to our context and justify its validity. Simulation studies show that in the context of testing ACD models, finite sample correction gives better sizes in finite samples and are robust to parameter estimation uncertainty. And, it is important to take into account time-varying conditional dispersion and higher-order conditional moments in standardized innovations; failure to do so can cause strong overrejection of a correctly specified ACD model. The proposed tests have reasonable power against a variety of popular linear and nonlinear ACD alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.