Abstract
In order to effectively utilize the explicit user relationship and implicit topic relations for the detection of micro-blog user interest communities, a micro-blog user interest community (MUIC) detection approach is proposed. First, through the analysis of the follow relationship between users, we have defined three types of such relationships to construct the user follow-ship network. Second, taking the semantic correlation between user tags into account, we construct the user interest feature vectors based on the concept of feature mapping to build a user tag based interest relationship network. Third, user behaviors, such as reposting, commenting, replying, and receiving comments from others, are able to provide certain guidance for the extraction of micro-blog topics. Hence, we propose to integrate the four mentioned user behaviors that are considered to provide guidance information for the traditional latent Dirichlet allocation (LDA) model. Thereby, in addition to the construction of a topic-based interest relationship network, a guided topic model can be built to extract the topics in which the user is interested. Finally, with the integration of the afore-mentioned three types of relationship network, a micro-blog user interest relationship network can be created. Meanwhile, we propose a MUIC detection algorithm based on the contribution of the neighboring nodes. The experiment result proves the effectiveness of our approach in detecting MUICs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.