Abstract
ABSTRACTWe solve the argument mining problem by investigating discourse and communicative text structure. A new formal graph-based structure called communicative discourse tree (CDT) is defined. It consists of a discourse tree with additional labels on edges, which stand for verbs. These verbs represent communicative actions. Discourse trees are based on rhetoric relations, extracted from a text according to Rhetoric Structure Theory. The problem is tackled as a binary classification task, where the positive class corresponds to texts with arguments and the negative class corresponds to texts with no arguments. The feature engineering for the classification task is conducted, deciding on which syntactic and discourse features are associated with logical argumentation. Text classification framework based on syntactic, discourse and communicative discourse text structures with a number of learning approaches is implemented. Evaluation on a combined data-set is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Theoretical Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.