Abstract
BackroundP. avium, a pioneer tree species that colonizes early forest successional stages, is assumed to require an effective strategy allowing stably repeatable rounds of local establishment, dispersal and local extinction. Consequently, the early replacement of cherry by climax tree species makes the establishment of several local generations very unlikely, especially in central European continuous cover forests. This has to be seen in connection with the mixed reproduction system involving asexual reproduction as a complementary adaptational strategy. Tests of the local establishment of wild cherry must therefore consider the possibility of first generation establishment via seedling recruitment potentially followed by an asexual generation (root suckering). Successful establishment can therefore be determined only among adult individuals with the option of detecting vegetative reproduction at these stages. To test the implied suggestion about local establishment strategies of wild cherry, nuclear microsatellites were used to analyse patterns of asexual propagation among adult stages that have been subjected to one of two major types of forest management. These management types, the historical "coppice with standards system" (CWS) and the "high forest system" (HFS), can be reasonably assumed to have affected the reproduction system of P. avium.ResultsClear differences were found in the reproduction pattern between two stands representing the two forest management types: 1) Clonal propagation is observed in both management systems, but with a distinctly higher frequency in the CWS. Hence, sexual recruitment as a first local generation is followed by a second asexual generation in both, whereas in the CWS there is evidence for an additional clonal generation. 2) The estimation of amounts of clonal reproduction critically depends on the assumptions about multilocus gene associations. This is revealed by the application of newly developed methods of quantifying gene associations. 3) Haplotype diversities are higher in the CWS and found to be associated with a large degree of heterozygosity for the second largest clonal group. 4) Seed set was sparse over the last eight years of observation in the CWS stand.ConclusionThis study provides useful guidelines for more comprehensive investigations, particularly on the interrelationships between degrees of cloning and capacity of sexual reproduction, amounts of multilocus gene associations, effects of heterozygosity on cloning success, and sustainability of different forest management types.
Highlights
This study provides useful guidelines for more comprehensive investigations, on the interrelationships between degrees of cloning and capacity of sexual reproduction, amounts of multilocus gene associations, effects of heterozygosity on cloning success, and sustainability of different forest management types
Modular growth allows for the production of new individuals that are genetically identical to each other and to their clonal ancestor [1]. This behaviour is observed in the tree species Prunus avium L
Typical of pioneer tree species such as wild cherry is that they colonize early forest successsional stages as a result of forest disturbances
Summary
Plant material Because of limited resources we had to make a choice between sampling several stands for both management systems at a low level of individual resolution, since experimental effort is large for forest tree species with a very low density, or to concentrate on an exhaustive survey of one exemplar of each system. We had to decide in favour of the latter, since locally complete surveys are required for reliable estimates of degrees of clonal reproduction. For this reason, the present study is to be understood as a first attempt to test common hypotheses on the effects of different management types on the breeding system of wild cherry and to infer more realistic hypotheses from these observations. All wild cherry trees were sampled within these http://www.biomedcentral.com/1472-6785/6/13 two stands (figure 2) in order to avoid effects of differences in sample size on the accuracy in allele frequency estimates and the method of clonal identification in each plot
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.