Abstract
The RNA World is currently the most plausible hypothesis for explaining the origins of life on Earth. The supporting body of evidence is growing and it comes from multiple areas, including astrobiology, chemistry, biology, mathematics, and, in particular, from computer simulations. Such methods frequently assume the existence of a hypothetical species on Earth, around three billion years ago, with a base sequence probably dissimilar from any in known genomes. However, it is often hard to verify whether or not a hypothetical sequence has the characteristics of biological sequences, and is thus likely to be functional. The primary objective of the presented research was to verify the possibility of building a computational ‘life probe’ for determining whether a given genetic sequence is biological, and assessing the sensitivity of such probes to the signatures of life present in known biological sequences. We have proposed decision algorithms based on the normalized compression distance (NCD) and Levenshtein distance (LD). We have validated the proposed method in the context of the RNA World hypothesis using short genetic sequences shorter than the error threshold value (i.e., 100 nucleotides). We have demonstrated that both measures can be successfully used to construct life probes that are significantly better than a random decision procedure, while varying from each other when it comes to detailed characteristics. We also observed that fragments of sequences related to replication have better discriminatory power than sequences having other molecular functions. In a broader context, this shows that the signatures of life in short RNA samples can be effectively detected using relatively simple means.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.