Abstract
The use of analytic methods for extracting learning strategies from trace data has attracted considerable attention in the literature. However, there is a paucity of research examining any association between learning strategies extracted from trace data and responses to well-established self-report instruments and performance scores. This paper focuses on the link between the learning strategies identified in the trace data and student reported approaches to learning. The paper reports on the findings of a study conducted in the scope of an undergraduate engineering course (N=144) that followed a flipped classroom design. The study found that learning strategies extracted from trace data can be interpreted in terms of deep and surface approaches to learning. The detected significant links with self-report measures are with small effect sizes for both the overall deep approach to learning scale and the deep strategy scale. However, there was no observed significance linking the surface approach to learning and surface strategy nor were there significant associations with motivation scales of approaches to learning. The significant effects on academic performance were found, and consistent with the literature that used self-report instruments showing that students who followed a deep approach to learning had a significantly higher performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Learning Analytics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.