Abstract

Iron, a crucial biologically active ion essential for metabolic processes in living organisms, plays a vital role in biological functions, and imbalances in iron levels can lead to various diseases. In this study, we have developed two simple "turn-on" fluorescent probes, NOPy and NOCN, for the quick and selective detection of Fe2+ at nanomolar levels (LOD of 35 nM), accompanied by significant absorption and emission shifts, along with colorimetric demarcation. Both fluorophores exhibit an excellent "turn-on" emission response upon encountering Fe2+ in the cells. Flow cytometry and confocal fluorescence imaging studies demonstrate enhanced fluorescence signals in response to labile iron, efficiently detecting heme during erastin-induced ferroptosis. Interestingly, we also observed that the product formed after Fe2+ sensing localizes within the lipid droplets. These water-soluble and highly sensitive reactive probes, NOPy and NOCN, enable investigations of iron-dependent physiological and pathological conditions. The development of these probes represents an advancement in the field, offering a rapid and selective means for detecting Fe2+ with minimal cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call