Abstract

Detectors for counting low energy (less than 1 MeV ) ionizing events in liquid helium are developed and characterized. These devices employ wavelength shifting fluors to convert extreme ultraviolet (EUV) helium scintillation light to the visible, allowing transport of signal light to room temperature. Three technological approaches are developed and tested: wavelength shifting fiber, composite acrylic tube, and diffuse reflecting tube of expanded teflon. The tube-based detectors have been used to detect magnetically trapped neutrons. All of the technological approaches have utility in other experiments, such as a more sensitive measurement of the neutron electric dipole moment and the monitoring of the low-energy solar neutrino flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.