Abstract
This study examined and compared various statistical methods for detecting individual differences in change. Considering 3 issues including test forms (specific vs. generalized), estimation procedures (constrained vs. unconstrained), and nonnormality, we evaluated 4 variance tests including the specific Wald variance test, the generalized Wald variance test, the specific likelihood ratio (LR) variance test, and the generalized LR variance test under both constrained and unconstrained estimation for both normal and nonnormal data. For the constrained estimation procedure, both the mixture distribution approach and the alpha correction approach were evaluated for their performance in dealing with the boundary problem. To deal with the nonnormality issue, we used the sandwich standard error (SE) estimator for the Wald tests and the Satorra–Bentler scaling correction for the LR tests. Simulation results revealed that testing a variance parameter and the associated covariances (generalized) had higher power than testing the variance solely (specific), unless the true covariances were zero. In addition, the variance tests under constrained estimation outperformed those under unconstrained estimation in terms of higher empirical power and better control of Type I error rates. Among all the studied tests, for both normal and nonnormal data, the robust generalized LR and Wald variance tests with the constrained estimation procedure were generally more powerful and had better Type I error rates for testing variance components than the other tests. Results from the comparisons between specific and generalized variance tests and between constrained and unconstrained estimation were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.