Abstract

AbstractThe rapid growth of life science databases demands the fusion of knowledge from heterogeneous databases to answer complex biological questions. The discrepancies in nomenclature, various schemas and incompatible formats of biological databases, however, result in a significant lack of interoperability among databases. Therefore, data preparation is a key prerequisite for biological database mining. Integrating diverse biological molecular databases is an essential action to cope with the heterogeneity of biological databases and guarantee efficient data mining. However, the inconsistency in biological databases is a key issue for data integration. This chapter proposes a framework to detect the inconsistency in biological databases using ontologies. A numeric estimate is provided to measure the inconsistency and identify those biological databases that are appropriate for further mining applications. This aids in enhancing the quality of databases and guaranteeing accurate and efficient mining of biological databases.KeywordsGene OntologyPathway DatabaseMining ApplicationDatabase EntryDatabase SourceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.