Abstract

Density functional theory (DFT) calculations, combined with a constrained minima hopping algorithm (global minimum search while preserving the molecular identity), have been performed to investigate important reaction intermediates for the heterogeneously catalyzed β-O-4′ bond cleavage in lignin derivatives. More specifically, we have studied the adsorption properties of a keto tautomer (1-methoxypropan-2-one) and its enol form on a catalytically active Pd(111) surface. In agreement with experiments, we find that for the gas-phase molecules the keto tautomer is the most stable. Interestingly, the enol tautomer has a higher affinity to the Pd catalyst than the keto form, and becomes the most stable molecular form when adsorbed on the catalyst surface. The global minimum complex found on the metal surface corresponds to an enolate structure formed when the enol tautomer chemisorbs onto the surface and donates its π-electrons from the C═C region to two adjacent palladium atoms. The actual formation of a chemical bond to the surface in the case of the enol molecule could be the key to understanding why the enol derivative is needed for an efficient β-O-4′ bond cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call