Abstract
Currently, video and digital images possess extensive utility, ranging from recreational and social media purposes to verification, military operations, legal proceedings, and penalization. The enhancement mechanisms of this medium have undergone significant advancements, rendering them more accessible and widely available to a larger population. Consequently, this has facilitated the ease with which counterfeiters can manipulate images. Convolutional neural network (CNN)-based feature extraction and detection techniques were used to carry out this task, which aims to identify the variations in image features between modified and non-manipulated areas. However, the effectiveness of the existing detection methods could be more efficient. The contributions of this paper include the introduction of a segmentation method to identify the forgery region in images with the U-Net model’s improved structure. The suggested model connects the encoder and decoder pipeline by improving the convolution module and increasing the set of weights in the U-Net contraction and expansion path. In addition, the parameters of the U-Net network are optimized by using the grasshopper optimization algorithm (GOA). Experiments were carried out on the publicly accessible image tempering detection evaluation dataset from the Chinese Academy of Sciences Institute of Automation (CASIA) to assess the efficacy of the suggested strategy. The results show that the U-Net modifications significantly improve the overall segmentation results compared to other models. The effectiveness of this method was evaluated on CASIA, and the quantitative results obtained based on accuracy, precision, recall, and the F1 score demonstrate the superiority of the U-Net modifications over other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.