Abstract

This Letter introduces an efficient human detection method in thermal images, using a center-symmetric local binary pattern (CS-LBP) with a luminance saliency map and a random forest (RF) classifier scheme. After detecting a candidate human region, we crop only the head and shoulder region, which has a higher thermal spectrum than the legs or trunk. The CS-LBP feature is then extracted from the luminance saliency map of a hotspot and applied to the RF classifier, which is an ensemble of randomized decision trees. We demonstrate that our detection method is more robust than conventional feature descriptors and classifiers in thermal images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.