Abstract
Human detection in dense crowds is an important problem, as it is a prerequisite to many other visual tasks, such as tracking, counting, action recognition or anomaly detection in behaviors exhibited by individuals in a dense crowd. This problem is challenging due to the large number of individuals, small apparent size, severe occlusions and perspective distortion. However, crowded scenes also offer contextual constraints that can be used to tackle these challenges. In this paper, we explore context for human detection in dense crowds in the form of a locally-consistent scale prior which captures the similarity in scale in local neighborhoods and its smooth variation over the image. Using the scale and confidence of detections obtained from an underlying human detector, we infer scale and confidence priors using Markov Random Field. In an iterative mechanism, the confidences of detection hypotheses are modified to reflect consistency with the inferred priors, and the priors are updated based on the new detections. The final set of detections obtained are then reasoned for occlusion using Binary Integer Programming where overlaps and relations between parts of individuals are encoded as linear constraints. Both human detection and occlusion reasoning in proposed approach are solved with local neighbor-dependent constraints, thereby respecting the inter-dependence between individuals characteristic to dense crowd analysis. In addition, we propose a mechanism to detect different combinations of body parts without requiring annotations for individual combinations. We performed experiments on a new and extremely challenging dataset of dense crowd images showing marked improvement over the underlying human detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.