Abstract

Global Navigation Satellite System (GNSS) is pervasively used in position, navigation, and timing (PNT) applications. As a consequence, important assets have become vulnerable to intentional attacks on GNSS, where of particular relevance is spoofing transmissions that aim at superseding legitimate signals with forged ones in order to control a receiver’s PNT computations. Detecting such attacks is therefore crucial, and this article proposes to employ an algorithm based on deep learning to achieve the task. A data-driven classifier is considered that has two components: a deep learning model that leverages parallelization to reduce its computational complexity and a clustering algorithm that estimates the number and parameters of the spoofing signals. Based on the experimental results, it can be concluded that the proposed scheme exhibits superior performance compared to the existing solutions, especially under moderate-to-high signal-to-noise ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.