Abstract

In this work, the authors extract information on distinct baseline features from a popular open-source music corpus and explore new recognition techniques by applying unsupervised Hebbian learning techniques on our single-layer neural network using the same dataset. They show the detailed empirical findings to simulate how such an algorithm can help a single layer feedforward network in training for music feature learning as patterns. The unsupervised training algorithm enhances the proposed neural network to achieve an accuracy of 90.36% for successful music feature detection. For comparative analysis against similar tasks, they put their results with the likes of several previous benchmark works. They further discuss the limitations and thorough error analysis of the work. They hope to discover and gather new information about this particular classification technique and performance, also further understand future potential directions that could improve the art of computational music feature recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.