Abstract
Spatial clusters of genes conserved across multiple genomes provide important clues to gene functions and evolution of genome organization. Existing methods of identifying these clusters often made restrictive assumptions, such as exact conservation of gene order, and relied on heuristic algorithms. We developed a very efficient algorithm based on a 'gene teams' model that allows genes in the clusters to appear in different orders. This allows us to detect conserved gene clusters under flexible evolutionary constraints in a large number of genomes. Our statistical evaluation incorporates the evolutionary relationship among genomes, a key aspect that has been missing in most previous studies. We conducted a large-scale analysis of 133 bacterial genomes. Our results confirm that our approach is an effective way of uncovering functionally related genes. The comparison with known operons and the analysis of the structural properties of our predicted clusters suggest that operons are an important source of constraint, but there are also other forces that determine evolution of gene order and arrangement. Using our method, we predicted functions of many poorly characterized genes in bacterial. The combined algorithmic and statistical methods we present here provide a rigorous framework for systematically studying evolutionary constraints of genomic contexts. The software, data and the full results of this article are available online at http://www.ews.uiuc.edu/~xuling/mcmusec.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.