Abstract

We propose a statistical test to identify nonstationary frequency-modulated stochastic processes from time-series data. Our method uses the instantaneous phase as a discriminatory statistics with reliable critical values derived from surrogate data. We simulated an oscillatory second-order autoregressive process to evaluate the size and power of the test. We found that the test we propose is able to correctly identify more than 99% of nonstationary data when the frequency of the simulated data is doubled after the first half of the time series. Our method is easily interpretable, computationally cheap, and does not require choosing hyperparameters that are dependent on the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.