Abstract
We develop multi-class financial misstatement detection models to detect misstatements with fraud intention. Hennes, Leone and Miller (2008) conducted a post-event analysis of financial restatements and classified restatements as intentional or unintentional. Using their results (along with non-misstated firms) in the form of a three-class target variable, we develop three multi-class classifiers, multinomial logistic regression, support vector machine, and Bayesian networks, as predictive tools to detect and classify misstatements according to the presence of fraud intention. To deal with class imbalance and asymmetric misclassification costs, we undertake cost-sensitive learning using MetaCost. We evaluate features from previous studies of detecting fraudulent intention and material misstatements. Features such as the short interest ratio and the firm-efficiency measure show discriminatory potential. The yearly and quarterly context-based feature set created further improves the performance of the classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.