Abstract

Neutrinos in dense environments like core-collapse supernovae (CCSNe) and neutron star mergers (NSMs) can undergo fast flavor conversions (FFCs) once the angular distribution of neutrino lepton number crosses zero along a certain direction. Recent advancements have demonstrated the effectiveness of machine learning (ML) in detecting these crossings. In this study, we enhance prior research in two significant ways. First, we utilize realistic data from CCSN simulations, where neutrino transport is solved using the full Boltzmann equation. We evaluate the ML methods’ adaptability in a real-world context, enhancing their robustness. In particular, we demonstrate that when working with artificial data, simpler models outperform their more complex counterparts, a noteworthy illustration of the bias-variance tradeoff in the context of ML. We also explore methods to improve artificial datasets for ML training. In addition, we extend our ML techniques to detect the crossings in the heavy-leptonic channels, accommodating scenarios where νx and ν¯x may differ. Our research highlights the extensive versatility and effectiveness of ML techniques, presenting an unparalleled opportunity to evaluate the occurrence of FFCs in CCSN and NSM simulations. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.