Abstract
The dependence on advanced information and communication technology increases the vulnerability in smart grids under cyber-attacks. Recent research on unobservable false data injection attacks (FDIAs) reveals the high risk of secure system operation, since these attacks can bypass current bad data detection mechanisms. To mitigate this risk, this paper proposes a data-driven learning-based algorithm for detecting unobservable FDIAs in distribution systems. We use autoencoders for efficient dimension reduction and feature extraction of measurement datasets. Further, we integrate the autoencoders into an advanced generative adversarial network (GAN) framework, which successfully detects anomalies under FDIAs by capturing the unconformity between abnormal and secure measurements. Also, considering that the datasets collected from practical power systems are partially labeled due to expensive labeling costs and missing labels, the proposed method only requires a few labeled measurement data in addition to unlabeled data for training. Numerical simulations in three-phase unbalanced IEEE 13-bus and 123-bus distribution systems validate the detection accuracy and efficiency of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.