Abstract
Accurate and timely detection of large events on urban transportation networks enables informed mobility management. This work tackles the problem of extreme event detection on large-scale transportation networks using origin-destination mobility data, which is now widely available. Such data is highly structured in time and space, but high dimensional and sparse. Current multivariate time series anomaly detection methods cannot fully address these challenges. To exploit the structure of mobility data, we formulate the event detection problem in a novel way, as detecting anomalies in a set of time-dependent directed weighted graphs. We further propose a Context augmented Graph Autoencoder (Con-GAE) model to solve the problem, which leverages graph embedding and context embedding techniques to capture the spatial and temporal patterns. Con-GAE adopts an autoencoder framework and detects anomalies via semi-supervised learning. The performance of the method is assessed on several city-scale travel-time datasets from Uber Movement, New York taxis, and Chicago taxis and compared to state-of-the-art approaches. The proposed Con-GAE can achieve an improvement in the area under the curve score as large as 0.15 over the second best method. We also discuss real-world traffic anomalies detected by Con-GAE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.