Abstract

In current extensible monolithic operating systems, loadable kernel modules (LKM) have unrestricted access to all portions of kernel memory and I/O space. As a result, kernel-module exploitation can jeopardize the integrity of the entire system. In this paper, we analyze the threat that comes from the implicit trust relationship between the operating system kernel and loadable kernel modules. We then present a specification-directed access monitoring tool - HECK, that detects kernel modules for malicious code execution. Inside the module, HECK prevents code execution on the kernel stack and the data sections; on the boundary, HECK restricts the module's access to only those kernel resources necessary for the module's operation. Our measurements show that our tool incurs 5-23% overhead on some I/O intensive applications using these modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.