Abstract
Detection of disease gene interaction effects among the enormous array of single nucleotide polymorphism (SNP) combinations represents the next frontier in genome-wide association (GWA) studies. Here we propose a novel strategy on the basis of the pattern and nature of the interaction, which can be classified as essential (EI) or removable (RI). We provide an analytical framework, including the qualitative conditions for screening EIs/RIs and a RI-to-EI likelihood ratio score to quantitatively measure the effect. In analyzing six GWA data sets, we find that the scores follow an exponential distribution, except in the upper 10(-8) tail region in which the scores become irregular and unpredictable. Our approach is conceptually simple, computationally efficient and detects interactions that can be visualized and unequivocally interpreted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.