Abstract

Opinion mining is an important step towards facilitating information in health data. Several studies have demonstrated the possibility of tracking diseases using public tweets. However, most studies were applied to English language tweets. Influenza is currently one of the world's greatest infectious disease challenges. In this study, a new approach is proposed in order to detect Influenza using machine learning techniques from Arabic tweets in Arab countries. This paper is the first study of epidemic diseases based on Arabic language tweets. In this work, we have collected, labeled, filtered and analyzed the influenza-related tweets written in the Arabic language. Several classifiers were used to measure the quality and the performance of the approach, which are: Naive Bayes, Support Vector Machines, Decision Trees, and K-Nearest Neighbor. The classifiers which achieved the best accuracy results for the three experiments were: Naïve Bayes with 89.06%, and K-Nearest Neighbor with 86.43%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.