Abstract
Forest ecosystems are under constant threat from wood-boring pests such as the Emerald ash borer (EAB), which remain elusive owing to their hidden life cycles within tree trunks. Early detection is vital to mitigate economic and ecological damage. The main current monitoring method is manual detection which is ineffective at early stages of infestation. This study introduces VibroEABNet, a deep learning-based joint recognition network designed to enhance the detection of EAB boring vibration signals, with a novel approach integrating denoising and recognition modules. The proposed VibroEABNet model demonstrated exceptional performance, achieving an average accuracy of 98.98% across multiple signal-to-noise ratios (SNRs) in test datasets and a remarkable 97.5% accuracy in real forest datasets, surpassing traditional models and other deep learning networks evaluated in this study. These findings were supported by rigorous noise resistance analysis and real dataset evaluation, indicating the model's robustness and reliability in practical applications. Furthermore, the model's efficiency was highlighted by its inference time of 26 ms and a compact model size of 8.43 MB, underscoring its suitability for deployment in resource-limited environments. The development of VibroEABNet marks a significant advancement in pest detection methodologies, offering a scalable, accurate and efficient solution for early monitoring of wood-boring pests. The integration of a denoising module within the network structure addresses the challenge of environmental noise, one of the primary limitations in acoustic monitoring of pests. Currently, this research is limited to a specific pest. Future work will focus on the applicability of this network to other wood-boring pests. © 2024 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.