Abstract

Employing microphotoluminescence spectroscopy at low temperatures, we are able to detect dopant diffusion enhancement along various grain boundaries and subgrain boundaries in multicrystalline silicon wafers. We find an enhancement of phosphorus diffusion at all investigated grain boundary types. In addition, the subgrain boundaries are demonstrated to contain a relatively high density of defects and impurities, suggesting that their presence does not significantly hinder the preferential diffusion of dopant atoms along the subgrain boundaries. Finally, we demonstrate that the technique can be applied to different diffused layers for solar cell applications, even at room temperature if an appropriate excitation wavelength is used. The results are validated with secondary electron dopant contrast images, which confirm the higher dopant concentration along the grain boundaries and subgrain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.