Abstract
COVID-19 has altered the way businesses throughout the world perceive cyber security. It resulted in a series of unique cyber-crime-related conditions that impacted society and business. Distributed Denial of Service (DDoS) has dramatically increased in recent year. Automated detection of this type of attack is essential to protect business assets. In this research, we demonstrate the use of different deep learning algorithms to accurately detect DDoS attacks. We show the effectiveness of Long Short-Term Memory (LSTM) algorithms to detect DDoS attacks in computer networks with high accuracy. The LSTM algorithms have been trained and tested on the widely used NSL-KDD dataset. We empirically demonstrate our proposed model achieving high accuracy (~97.37%). We also show the effectiveness of our model in detecting 22 different types of attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Computer Science and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.