Abstract

This paper describes fabric inspection system aided by computer vision to detect and classify defects in circular knitted fabrics using different common texture-recognition methods, including co-occurrence matrices, the discrete Fourier transform, wavelets, Gabor, and clustering. The images of the fabrics were broadly classified into six classes: cracks, holes, vertical stripes, horizontal stripes, soil freckles, and defect-free. One hundred and twenty images (256 gray level and 100 dpi) containing 20 images of defect-free fabrics (rib 1x1) as well as 100 images corresponding to five different categories were used. In general, one-half of the images in each category were employed for training and the remaining images were used for testing. The application of the clustering method applied in this work was found to be highly promising at identifying defects in knitted fabrics. With an overall success rate of 91.6%, the clustering method has a higher efficiency value than all of the other methods. In the case of the wavelet and Gabor methods, the results are acceptable. However, the overall success rates of the co-occurrence matrix and Fourier transform methods in recognizing defects in knitted fabrics are not acceptable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.