Abstract
Distributed Denial of Service (DDoS) attack is a major threat to the availability of Web service. The inherent presence of self-similarity in Web traffic motivates the applicability of time series analysis in the study of the burst feature of DDoS attack. This paper presents a method of detecting DDoS attacks against Web server by analyzing the abrupt change of time series data obtained from Web traffic. Time series data are specified in reference sliding window and test sliding window, and the abrupt change is modeled using Auto-Regressive (AR) process. By comparing two adjacent non-overlapping windows of the time series, the attack traffic could be detected at a time point. Combined with alarm correlation and location correlation, not only the presence of DDoS attack, but also its occurring time and location can be determined. The experimental results in a test environment are illustrated to justify our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.