Abstract

AbstractCyberattacks on cyber‐physical systems (CPS) have the potential to cause widespread disruption and affect the safety of millions of people. Machine learning can be an effective tool for detecting attacks on CPS, including the most stealthy types of attacks, known as covert channel attacks. In this study, the authors describe a novel hierarchical ensemble architecture for detecting covert channel attacks in CPS. Our proposed approach uses a combination of TCP payload entropy and network flows for feature engineering. Our approach achieves high detection performance, shortens the model training duration, and shows promise for effective detection of covert channel communications. This novel architecture closely mirrors the CPS attack stages in real‐life, providing flexibility and adaptability in detecting new types of attacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.