Abstract
Voice conversion techniques present a threat to speaker verification systems. To enhance the security of speaker verification systems, We study how to automatically distinguish natural speech and synthetic/converted speech. Motivated by the research on phase spectrum in speech perception, in this study, we propose to use features derived from phase spectrum to detect converted speech. The features are tested under three different training situations of the converted speech detector: a) only Gaussian mixture model (GMM) based converted speech data are available; b) only unit-selection based converted speech data are available; c) no converted speech data are available for training converted speech model. Experiments conducted on the National Institute of Standards and Technology (NIST) 2006 speaker recognition evaluation (SRE) corpus show that the performance of the features derived from phase spectrum outperform the melfrequency cepstral coefficients (MFCCs) tremendously: even without converted speech for training, the equal error rate (EER) is reduced from 20.20% of MFCCs to 2.35%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.