Abstract

Molecular interaction data plays an important role in understanding biological processes at a modular level by providing a framework for understanding cellular organization, functional hierarchy, and evolutionary conservation. As the quality and quantity of network and interaction data increases rapidly, the problem of effectively analyzing this data becomes significant. Graph theoretic formalisms, commonly used for these analysis tasks, often lead to computationally hard problems due to their relation to subgraph isomorphism. This paper presents an innovative new algorithm, MULE, for detecting frequently occurring patterns and modules in biological networks. Using an innovative graph simplification technique based on ortholog contraction, which is ideally suited to biological networks, our algorithm renders these problems computationally tractable and scalable to large numbers of networks. We show, experimentally, that our algorithm can extract frequently occurring patterns in metabolic pathways and protein interaction networks from the KEGG, DIP, and BIND databases within seconds. When compared to existing approaches, our graph simplification technique can be viewed either as a pruning heuristic, or a closely related, but computationally simpler task. When used as a pruning heuristic, we show that our technique reduces effective graph sizes significantly, accelerating existing techniques by several orders of magnitude! Indeed, for most of the test cases, existing techniques could not even be applied without our pruning step. When used as a stand-alone analysis technique, MULE is shown to convey significant biological insights at near-interactive rates. The software, sample input graphs, and detailed results for comprehensive analysis of nine eukaryotic PPI networks are available at www.cs.purdue.edu/homes/koyuturk/mule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.