Abstract
Properties of complex networks, such as small-world property, power-law degree distribution, network transitivity, and network- community structure which seem to be common to many real-world networks have attracted great interest among researchers. In this study, global information of the networks is considered by defining the profile of any node based on the shortest paths between it and all the other nodes in the network; then a useful iterative procedure for community detection based on a measure of information discrepancy and the popular modular function Q is presented. The new iterative method does not need any prior knowledge about the community structure and can detect an appropriate number of communities, which can be hub communities or non-hub communities. The computational results of the method on real networks confirm its capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.