Abstract

This paper presents a proposal aiming at better understanding a workload of SQL queries and detecting coherent explorations hidden within the workload. In particular, our work investigates SQLShare (Jain et al., 2016), a database-as-a-service platform targeting scientists and data scientists with minimal database experience, whose workload was made available to the research community. According to the authors of (Jain et al., 2016), this workload is the only one containing primarily ad-hoc hand-written queries over user-uploaded datasets. We analyzed this workload by extracting features that characterize SQL queries and we investigate three different machine learning approaches to use these features to separate sequences of SQL queries into meaningful explorations. The first approach is unsupervised and based only on similarity between contiguous queries. The second approach uses transfer learning to apply a model trained over a dataset where ground truth is available. The last approach uses weak labeling to predict the most probable segmentation from heuristics meant to label a training set. We ran several tests over various query workloads to evaluate and compare the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.