Abstract
Abstract: Cloud computing enables users to access computing services over the Internet, but this also presents a security risk due to the anonymous nature of the Internet. Social engineering attacks are one of the most common security breaches in cloud computing, where attackers trick cloud users to reveal sensitive information. Detecting phishing attacks in cloud computing is challenging, and various solutions have been proposed, including rule-based and anomaly-based detection methods. Machine learning techniques have proven to be effective in detecting and classifying phishing attacks, particularly for distinguishing between legitimate and phishing websites. This paper proposes an ensemble approach utilizing four different machine learning classifiers to detect phishing websites. The study analyzes various features, such as address bar-based, domain-based, and HTML & JavaScript-based features, and the findings reveal that the proposed ensemble approach outperforms the base classifiers, achieving the highest accuracy of 98.8%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.