Abstract

Dielectrophoresis (DEP) enables the measurement of population-level electrophysiology in many cell types by examining their interaction with an externally applied electric field. Here we describe the application of DEP to the measurement of circadian rhythms in a non-nucleated cell type, the human red blood cell. Using DEP, population-level electrophysiology of ~20,000 red blood cells can be measured from start to finish in less than 3min, and can berepeated over several days to reveal cell-autonomous daily regulation of membrane electrophysiology. This method is amenable to the characterization of circadian rhythms by altering entrainment and free-run conditions or through pharmacological perturbation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call