Abstract

Soluble salts play a key factor in damage to a variety of materials, including stone, ceramics and metals. Particularly, salt contamination can lead to weakening of porous materials through salt crystallisation events, and increases the rate of metal corrosion. Over time, this results in physical damage to affected objects and buildings. It is therefore important to be able to monitor the salt content of materials, in order to understand levels of salt contamination and the potential for damage to occur. This research discusses the further development of the testing method for surface chlorides originally proposed by Piechota and Drake Piechota (2016) in their article “A simple survey kit for chloride detection on cuneiform tablets and other collections”. It introduces new and revised steps into the original protocol in order to make the achieved results semi-quantifiable, as well as identifying the limits of detection of the test kit. A comparison to alternative testing methods showed that comparable results were achievable using this methodology. The revised methodology was tested for efficacy on a range of salt contaminated objects, as well as on samples from buildings.

Highlights

  • Soluble salt damage to materials is an ongoing ­conservation issue, with the potential to affect heritage buildings, statuary, and other historic objects

  • Construction of testing kit base The chloride test kit was constructed according to the instructions from Piechota and Drake Piechota (2016), with a modification made to the phone slot using inserts made from strips of cut Ethafoam E220, in order for a variety of phone sizes to be utilised

  • Testing limits of detection and optimising quantification In order to determine the extent of quantification possible using this surface chloride detection method, it was necessary to ensure that all stages of the sampling and testing process were as repeatable as possible

Read more

Summary

Introduction

Soluble salt damage to materials is an ongoing ­conservation issue, with the potential to affect heritage buildings, statuary, and other historic objects. Carbonates are known as insoluble salts, forming on the surface of materials hard crusts that do not re-dissolve in the presence of moisture. Insoluble carbonates may originate from external sources, or from the material itself (Lehmann, 1971) Soluble salts, such as chlorides, may form salt crystals both on (efflorescence) and below (sub-efflorescence) the surface of materials; testing of surface salts is a good indicator of the salts present throughout a material, and provides an indicator of the possibility for ­sub-efflorescence. Salts will often undergo repeated cycles of dissolution and crystallisation, as relative humidity and material moisture levels change, increasing the stress and potential damage to the material (Lombardo et al, 2004)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.