Abstract

In this study, differences in the chemical compositions of rebated excise duty diesel oil samples that were caused by fuel laundering were investigated. Two possible laundering pathways were simulated using either reduction or adsorption agents in model samples that were spiked with Solvent Yellow 124 and Solvent Red 19. The samples were characterized by their chromatographic fingerprints, which were recorded using gas chromatography coupled with a nitrogen chemiluminescence detector. The collections of fingerprints were further analyzed by discriminant partial least squares and the models with the optimal complexities presented the correct discrimination rates in the range of 69.1%–99.6%, respectively. The most informative fingerprint sections that were associated with the investigated differences were identified using the variable importance in projection, selectivity ratio and uninformative variable elimination methods. The reduced multivariate discriminant models presented a relatively high performance with the correct classification rates in the range of 74.9%–99.8%, respectively. O-toluidine and 2,5-diaminotoluene were identified as potential markers of diesel oil counterfeiting by laundering through a reduction agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.